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Numerical differentiation

Problem formulation

Let the function y = f(x) be defined in the interval [a,b] and have derivatives of a given
order. If there is a known table with the values y; = f(x;) of the function in points (nodes)
X0:X] X3 Xy €[a,b] the methods of numerical differentiation allow the finding of the
approximated value of the derivative y'(x)= f'(x) in the given point x, the value of the
second derivative etc. Particularly important for numerical differentiation of some functions
is the possible instability of the problem, i.e. small errors in the input data leading to big
errors in the result and sometimes even to the so called "error explosion". Such is the case
when derivatives grow significantly which is noticeable by the big differences in the finite
differences. In the last example such a type of function is illustrated and it is shown how to
solve the instability problem.

Further down we will only consider the case of equally distanced nodes in the given

interval [a,b] for which x;,; = x; +h where h is the step between the nodes. The table will be

of the following type:
Xj X0 X1 Xj Xn
Yi Yo Y1 Yi Yn

I) The formula for numerical differentiation based on Newton's interpolation

polynomial for forward interpolation:
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Here t=2"290 and A¥ Y, 1s the finite difference from k-th order in point x.

In particular for x = x, we have t=0 from where we get
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II) The formula for numerical differentiation base on Newton’s interpolation

polynomial for backward interpolation:
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In particular for x = x, we have t =0 from where we get
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Note. Formulas (1) - (8) give an opportunity for effective calculation of the derivatives
because they offer posterior error evaluation. The latter means that the addition of every
other summand to the right side of the formulas leads to particularization of the sought value.
That is why calculations are terminated when the summand to be added has an absolute value

smaller than the accuracy of the data (the so called irreversible error).

IIT) Formulas for numerical differentiation using point stencils on uniform mesh:

Formula for numerical
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Example 1. The values of the function y = f(x) = In(x?) in the interval [2,3] are given in the
first two columns of table 1. Calculate the approximated values of the first derivatives in
nodes xy =2, x; =21, £=2,04, Xj9=3.
Solution:

We calculate consecutively the finite differences Ayj, A’y;, ... which we enter into

table 1. For the step h by x we have h=x;,;-x% =0,1.

Table 1

i X i Ay; Ay, Ay Aty Ay,

0 | 2,0 | 1,38629 | 0,09758 | -0,00454 | 0,00040 | -0,00005 | 0,00001
1 | 2,1 | 1,48387 | 0,09304 | -0,00414 | 0,00035 | -0,00004 | 0,00000
2 | 22 | 1,57691 | 0,08890 | -0,00378 | 0,00031 | -0,00004 | 0,00001
3 | 23 | 166582 | 0,08512 | -0,00348 | 0,00027 | -0,00003 | 0,00000
4| 24 | 1,75094 | 0,08164 | -0,00320 | 0,00024 | -0,00003 | 0,00001
5 | 2,5 | 1,83258 | 0,07844 | -0,00296 | 0,00022 | -0,00002 | 0,00000
6 | 2,6 | 1,91102 | 0,07548 | -0,00275 | 0,00019 | -0,00002

7 | 2,7 | 1,98650 | 0,07274 | -0,00255 | 0,00017

8 | 2,8 | 2,05924 | 0,07018 | -0,00238

9 | 2,9 | 2,12942 | 0,06780
10| 3,0 | 2,19722

When x, =2 by substitution in formula (3) we get

1

Yo & 1 (0,09758 - %(—0,00454) + %0,00040 - %(—0,00005) + j ~ 0,99998 .

Here it is obvious that the member containing A°y; (and those following it) is very small and

can be disregarded. The exact value in this example is known, it is y'(x) =(ln(X2))':2—§=§,
X

re. f'(2) :gz 1. Consequently the resulting approximated value yg; ~0,99998 has an absolute

error of 0,00002.
Analogically for the other point x; =21 using the same formula but by utilizing the

second row of the table we find that:

y| = $[0,09304 - %(—0,00414) + %0,00035 - %(—0,00004) + j ~ 0,95236 .
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Let us now take the point & =2,04. It is located in the beginning of the interval close to
Xo =2 and it is most natural to utilize the general formula (1). We calculate the deviation
from the beginning t = (£ —x)/h=(2,04-2)/0,1=0,4. Then

1
0,1

Y'(E)=Yy't)=Y'(0,4) ~ 2.0,4-1

(o, 09758 + (~0,00454) + j ~0,98040 .

For the first derivative in point x;( =3 we utilize formula (7):

1

!

Yio ®

" (0,06780 + %(—0,0023 8)+ %0,00017 + i(—0,0000Z) + j ~ 0,66667 .
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Note. The exact values of the derivative y'(x) = ln(xz)' -2 in the given nodes with an
X

accuracy of five digits are respectively: y'(2,1)=0,95238, y'(3)=0,66667, y'(2,04)=0,98039.

Example 2. With the help of the data from table 1 calculate the approximated value of the

second derivative in pointxy =2.

Solution:
From formula (4) we have:

Vo ~ ﬁ(— 0,00454 —0,00040 + %(— 0,00005 )+ J ~ 0,4986 .

Example 3. In the first two columns of table 2 are given the values of the function which
have been found by way of experiment. Calculate the approximated values of the derivatives
in points X;.

Solution:

We have interval [1; 1,4] and step h=005. In the point x, =1 we calculate the derivative
using the formula for left three point stencil — (9.3) and in point xg =14 using the formula for
right three point stencil — (9.4). In the inner points of the interval it is convenient to utilize
the central finite difference from formula (9.5). The results are given in the last column of the

table. As the data has an accuracy 0,0001 and h=0,05 then the formulas used by us with a

local error O(hz) in this case give an error around 0,0025. This means that the last digit in the

values of the derivative can be expected to be insignificant. As we don't know the exact

formula of the function and consequently we cannot evaluate to what extent the theoretical



error is real, the only indication for the reliability of the result being the gradual change of

values for y{, i =0,..8 if of course we presume the continuity of the derivative.
Table 2
i Xj Yi Approximations for Y/
0 1,00 -0,2475 -0,0353
1 1,05 -0,2490 -0,0229
2 1,10 -0,2498 -0,0104
3] 1,15 -0,2500 0,0021
41 1,20 -0,2496 0,0146
5 1,25 -0,2485 0,0270
6| 130 | -02469 0,0394
71 135 -0,2446 0,0517
8 | 1,40 -0,2417 0,0639

Example 4. Calculate the approximated values of the derivative of the function y =cos(8x)in
points xy =0 and x; =0.1.
Solution:

In this example we come across a case indicative of the instability of numerical
differentiation. The function has infinitely many derivatives and there seems to be no
problem. Let us choose, for example, the interval [0; 0,5] and divide it into five sub-intervals

with step h=0,1. We calculate the table of the finite differences — table 3. We notice that the

values of Ay; do not get smaller as with previous examples (compare!)

Table 3
Xi |Yi=cos(8%)| Ay A%y, Ay Aty
0,0 1,00000 | -0,30329 | -0,42261 | 0,44032 | -0,01074
0,1 | 069671 | -0,72591 | 001771 | 0,42958 | -0,27132
02 | -0,02920 | -0,70819 | 044729 | 0,15826
03 | -0,73739 | -0,26090 | 0,60555
04 | -0,99829 | 0,34465
0,5 | -0,65364

Utilizing the first row of finite differences from table 3 and formula (3) for x, =0 we

get:
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~ %(— 030329 +0,21131+0,14678 + 0,00269) ~ %0,05748 ~0,5748.

However, this result is significantly different from the correct one. Indeed the

derivative y'(x)=-8sin(8x) for x=0 is y'(0)=0. This way the real error of the numerical
differentiation & =|y’'(0)- yp|=[0-0,5748=0,5748 ~06 is much bigger and obviously isn’t due
to the rounding off which is in the area of 107°.

The result in point x; =0,1 is analogical. Using the given finite differences from the

second row of table 3 and formula (3) we calculate:

y! = i(— 0,72591 —%0,01771 +%O,42958 —%(— 0,27132)j ~—5,23738..

b

The exact value is: y'(0,1) =-5,73885. The error in this case, too is very significant -
0,50147.
Note. For experimental data, for which we don’t know the formula of the function, one
criterion is the presence of big and non-decreasing values of the finite differences. To solve
the problem and find satisfactory approximated values of the derivatives of instable problems
we can use a very small step h. Try to use this suggestion by choosing h=0,0001 and

calculating y;. There are some special methods for reducing the error, like for example, the

Runge-Romberg method.

Example 5. Using the formulas for numerical differentiation with an error of O(h?) fill in

the empty cells in the table:

X 0,1 0,2 0,3 0.4 0,5
y -4 1 11 20
y’ 35
yl )
Solution:

To calculate the value y(0,2) we will use formula (9-3.) for y'(0,1):
3V, +4V. . — V. _ _
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2hy'(0,1) +3y(0,))+ y(0,3)  2.0,1.35+3(-4)+1 _
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y(0,2) =



Then once again using formulas (9) we find:

y(0,3)-y(0,1) 1+4 _

YO -yOH _11+1 _

, 092 = = 25, ' 0,3 = = ;
y(02)=T=2 R = y(3) =0 "
S0y < YOI YO 2010 0o YOI =4yOA)+y(05) _1-44+60
2h 2.0,1 2h 2.0,1

For the second derivatives we have respectively:

y(0,3)-2y(0,2) + y(0,1) _ 1-2(-1)-4

"(0,2) = =-100;
y"(0,2) . 001
h? 0,01

y(04) < YO 2YOA +Y03) _20-211+1_ 00
h? 0,01
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